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The ionization equilibrium of an electron-hole plasma in a highly excited semiconductor is investigated.
Special attention is directed to the influence of many-particle effects such as screening and lowering of the
ionization energy causing, in particular, the Mott effect �density ionization�. This effect limits the region of
existence of excitons and, therefore, of a possible Bose-Einstein condensate at low temperatures. Results for
the chemical potential and the degree of ionization are presented for zinc selenide �ZnSe�. A possible window
for the occurrence of a Bose-Einstein condensate of excitons is shown, taking into account the Mott effect.
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I. INTRODUCTION

Dense electron-hole plasmas �EHPs� in excited semicon-
ductors have attracted unwaning attention for decades both
by experiment and theory. The understanding of the equilib-
rium properties of such a plasma, expressed by its phase
diagram, is of fundamental importance for any investigation
in this field. The aim of this paper is, therefore, to discuss
certain aspects of the phase diagram of an EHP: the ioniza-
tion equilibrium and, closely connected with the latter, the
Mott transition.

Electrons and holes are Fermi particles with the effective
masses me and mh �parabolic valence and conduction bands�.
Due to the attractive Coulomb interaction between them,
bound electron-hole pairs, the excitons, and the formation of
an ionization equilibrium e+h�X are observed.

The behavior of an EHP in an excited semiconductor is, in
principle, well understood.1,2 A special feature is the weak-
ening of the coupling with increasing density caused by
many-particle effects such as screening of the Coulomb in-
teraction and, therefore, a breakup of the excitons usually
referred to as Mott effect �density ionization�.3–6

The Mott effect is, in principle, understood as caused by
lowering of the band edge, while the exciton energy only
weakly changes with increasing density. This behavior is
caused by an interplay of several many-particle effects.
There are various approaches which can be found in the lit-
erature to describe the Mott effect, e.g., simple limiting cases
known from quantum statistics such as Debye shift or
Coulomb-hole shift for the band edge as well as statistically
founded or empirical formulas for the Mott density in semi-
conductors �see, e.g., Refs. 7–9�. Such formulas, however,
are far away from the capabilities of modern many-particle
theory and usually do not give more than a rough estimate.
On the other hand, previous investigations of the ionization
equilibrium10 neglected degeneracy effects, e.g., by using the
Saha equation. For this, a central aim of this work is to
present a consistent quantum statistical theory of the ioniza-
tion equilibrium and provide reliable data for the temperature
dependence of the Mott density. A first step into that direc-
tion has been done in Ref. 11, where a general mass-action
law �MAL� has been derived and applied to the ionization
equilibrium in cuprous oxide �Cu2O�. A self-contained pre-

sentation of the theory together with a consistent treatment of
the many-particle effects will be given in the present work.

A qualitative overview of the different states of the EHP
which could guide in particular experimentalists in the
choice of parameters for experiments can be given in the
density-temperature �n-T� plane. Because of the Mott effect,
which occurs roughly at rsc�aX �rsc denotes the screening
length, aX the excitonic Bohr radius�, the n-T plane is di-
vided into an area where bound states are possible
�rsc�aX� and an area without bound states �rsc�aX�, i.e., a
high-density electron-hole liquid. This subdivision, however,
can only give a qualitative picture.

The behavior in the excitonic area is essentially governed
by the formation of an ionization equilibrium, with a strong
dominance of excitons at lower temperatures. Since the ex-
citons behave approximately like composite Bose particles,
Bose-Einstein condensation �BEC� in the region n�X

3 �2.61
��X is the thermal de Broglie wavelength, �X

2

=2��2 / �MkBT�, M =me+mh� may be expected if the chemi-
cal potential reaches the exciton 1s ground-state energy.12–14

At higher densities, the region of BEC of excitons is, of
course, limited by the Mott transition. However, we under-
line that the vanishing of the excitons does not imply a dis-
appearance of the condensed phase. As proposed, e.g., by
Keldysh and Kopaev,15 in the high-density highly degenerate
electron-hole liquid, the formation of weakly bound coopera-
tive Cooper pairs of electrons and holes and their Bose con-
densation to a BCS state may be expected, known as exci-
tonic insulator. Details of BEC of excitons and electron-hole
pairs, however, are not in the main focus of the present work.
For an overview and recent investigations see, e.g., Refs.
16–19.

The ionization equilibrium is a topic which is extensively
discussed in plasma physics, too.2,20,21

This paper is organized as follows. In Sec. II we derive
briefly the basic quantum statistical theory of thermodynam-
ics of the EHP. In Sec. III we introduce the chemical picture
by redefining the bound states and discuss the resulting
mass-action law. Since the latter needs the solution of the
two-particle bound and scattering problem as an input, we
discuss, in Sec. IV, the two-particle spectrum on the basis of
the semiconductor Bloch equations. Finally, in Sec. V we
present results of the solution of the general mass-action law
valid for arbitrary degeneracy.
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II. GENERAL THEORY

There are several possibilities for the quantum statistical
approach to the equilibrium properties of the EHP, outlined,
e.g., in Refs. 1, 21, and 22. For a better understanding, we
will give a short review of the approach used here to describe
the ionization equilibrium. A useful starting point is the gen-
eral quantum statistical relation

na���c�,T� = ga� dk

�2��3 � d�

2�
Aa�k,��fa��� , �1�

expressing the carrier density na of the species a as a func-
tion of the chemical potentials ��c� and the temperature T.
fa��� is a Fermi-like distribution, and ga denotes the band
multiplicity �including spin degeneracy� of species a. The
spectral function Aa�k ,��=−2 Im ga

r�k ,�� is related to the
imaginary part of the retarded Green’s function of carriers
ga

r�k ,�� and is explicitly given by21

Aa�k,�� =
�	a�k,��

	�� −
�2k2

2ma
− Re 
a

r�k,��
2

+ 	1

2
	a�k,��
2 ,

�2�

with the single-particle damping 	a defined by the self-
energies 
a

�,

	a�k,�� = − 2 Im 
a
r�k,�� = i�
a

��k,�� − 
a
��k,��� . �3�

The spectral function accounts for many-particle effects
compactly in the retarded self-energy 
a

r�k ,��. With an ap-
propriate approximation for the self-energy, the inversion of
Eq. �1� gives �a=�a�na ,T� and, therefore, any thermody-
namic property of the EHP in the grand canonical descrip-
tion.

In the case of small damping, i.e., 	a�Re 
a
r , we can

expand the spectral function into a series with respect to 	a.
The first-order approximation reads23,24

Aa�k,�� = 2��
��� − Ea�k��

�	1 +
1

�

�

��
P� d�̄

2�
�	a�k,�̄�

� − �̄
�

��=Ea�k�



− 	a�k,��
�

��

P
�� − Ea�k�

, �4�

where P denotes the Cauchy principal value. The quasipar-
ticle energy Ea�k� is the solution of the dispersion relation

Ea�k� =
�2k2

2ma
+ Re 
a

r�k,�����=Ea�k�. �5�

The approximation �4� is referred to as extended quasi-
particle approximation.24 Its physical interpretation is clear:
The first �pole� contribution describes the free quasiparticles,
including renormalization, the second �off-pole� term repre-
sents the interaction between the quasiparticles. Using the
expansion �4�, the carrier density is given by23,24

na���c�,T�

= ga� dk

�2��3 fa„Ea�k�… − ga� dk

�2��3� d�

2�

�
	a�k,���fa��� − fa„Ea�k�…�
�

��

P
�� − Ea�k��

= na
0 + na

corr. �6�

The total density na is, therefore, subdivided into a con-
tribution of the free quasiparticles na

0 and the correlated ones
na

corr �second virial coefficient for quasiparticles�.
We proceed with the following steps:
�i� Obviously, the function 	a is a key quantity of the

theoretical approach. For its determination, there exist well-
known standard approximation schemes.21,22 In order to ad-
dress the problems of screening and forming of bound states
we consider the self-energy and, therefore, the damping 	a in
screened ladder approximation1,2

	a�k1,�� = − 2�
b
� dk2

�2��3 Im�k1k2�Tab
r
„� + Eb�k2�…�k1k2�

��fb„Eb�k2�… � nab
B
„� + Eb�k2�…� . �7�

The retarded off-shell T matrix obeys a Bethe-Salpeter
�or Lippmann-Schwinger� equation, Tab

r =Vab
s + i�Vab

s Gab
r Tab

r ,
where Vab

s is the screened Coulomb potential, and Gab
r is the

free two-particle retarded Green’s function given by the
single-particle correlation functions ga

� via

Gab
r ��� =� d�̄

2�
� d��

2�

ga
���̄�gb

���� � − ga
���̄�gb

���� �
� − �̄ − �� + i�

. �8�

�ii� To be consistent with the 	a expansion of the spectral
function, we expand the distribution function according to25

fa��a + Re 
a�� � fa��a� + Re 
a�
df

d�a
, �9�

where

�a�k� =
�2k2

2ma
+ Re 
a

RPA�k,�����=�a�k� �10�

is the quasiparticle energy in random phase approximation
�RPA� including the Hartree-Fock �HF� self-energy 
a

HF, and

a� means higher-order ladder terms convergent also for van-
ishing screening.

�iii� Inserting Eqs. �7� and �9� into Eq. �6�, we get for the
density

na���c�,T� = ga� dk

�2��3 fa„�a�k�…

+ ga�
b
�

−�

� d�

2�
nab

B ���Im F��� �11�

with

F��� = Tr12	 d

d�
Gab

r ���Tab
r ���
 .
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The main concern of our approach is to describe the in-
fluence of bound states on the properties of an EHP. Bound
and scattering state contributions arise from the off-pole
terms in Eq. �6� determined in screened ladder approxima-
tion by the off-shell T matrix, see Eq. �7�. The bound states
appear in the off-shell T matrix as poles at the real frequency
axis. From the bilinear expansion of the T matrix, we obtain
for the bound state part1,21,26

Fbound��� = �
n,l

��2l + 1�
��� − Enl� ,

with Enl being the bound state energy of the level given by
the set of quantum numbers �n , l�. Using this relation, the
bound and scattering state parts for the electron density may
be separated,

ne��e,�h,T� = ge� dk

�2��3 fe„�e�k�… + gegh�
nl

�2l + 1�� dK

�2��3

�
1

exp	���2K2

2M
+ Enl − �e − �h�
 − 1

+ ge�
�

� d�

2�
neh

B ���Im F��� �12�

with � representing the lowering of the band �continuum�
edge and �= �kBT�−1. The first term in Eq. �12� is the density
of the free quasiparticles. The second term is the contribution
of bound states,1,2,25 and the third one that of scattering
states.

III. CHEMICAL PICTURE

Up to now we considered the EHP in grand canonical
description as a two-component system with electrons and
holes in scattering and bound states. This description is usu-
ally referred to as the physical picture. Then, Eq. �12� pro-
vides appropriate thermodynamics of the plasma. In contrast,
the density expansion of the chemical potential following by
approximate inversion of Eq. �12� leads to inconsistencies at
low temperatures due to exponential divergences of the
bound state part.2,21

In the following we briefly recall an alternative view on
the bound states.2 Looking at the corresponding distribution
function

neh
B ��2K2

2M
+ Enl� =

1

ze
−1zh

−1 exp	��Enl +
�2K2

2M
�
 − 1

�13�

with the fugacities za=e��a, it is, obviously, convenient to
consider bound states as a new particle species (excitons),
which are characterized by the fugacity zX,

zX = zezhe−�Enl = e��X �14�

and by the ideal distribution function

nX
B��2K2

2M
� =

1

zX
−1 exp	�

�2K2

2M

 − 1

. �15�

With the latter step we have made a fundamental change
from the physical picture where the basic constituents are
only electrons and holes, being in scattering or bound states,
to a chemical picture where we have electrons, holes, and
excitons as basic constituents of the system.

We should emphasize here, however, the limitations of
this picture or, more precisely, of the underlying extended
quasiparticle approximation for the spectral function
Aa�k ,��, Eq. �4�: While Aa�k ,�� exhibits, at lower densities,
distinct bound state peaks and the pair continuum, the peaks
broaden for higher densities due to the damping. Thus, a
well-defined distinction between bound and scattering states
becomes problematic around the Mott density.5,6,27 A quanti-
tative demonstration of the effect for zinc oxide �ZnO� has
been given by Klingshirn, see Fig. 24b in Ref. 28. However,
in ZnSe the excitonic linewidth is much smaller,38 as will be
discussed in Sec. IV.

The electron density in the chemical picture consists of
“free” �quasiparticle ne

QP and scattering ne
scatt� and the bound

�exciton� nX contributions, cf. Eq. �12�,

ne��e,�h,�X,T� = ge� dk

�2��3 fe„�e�k�…

+ ge�
�

� d�

2�
neh

B ���Im F���

+ gegh�
nl

�2l + 1�� dK

�2��3nX
B��2K2

2M
�

= ne
QP + ne

scatt + nX. �16�

The excitons consisting of two bound Fermi particles are
described approximately as bosons �cf. Eqs. �13� and �15��.
The singularities of the bound state contribution
Enl+�2K2 / �2M�=�e+�h are well known to be connected to
the Bose condensation of the excitons.

In the chemical picture, the EHP is characterized by the
densities of free electrons ne

�=ne
QP+ne

scatt, free holes nh
� �with

nh
�=ne

��, and the density of excitons nX �total electron density
ne=ne

�+nX�. We have a partially ionized plasma in the ion-
ization equilibrium

e + h � X , �17�

which is controlled by the definition of the fugacities of the
new particles �14�. The latter relation determines the compo-
sition of the system described by the degree of ionization

� =
ne

�

ne
�18�

and plays the role of a MAL. It is equivalent to the well-
known thermodynamic condition for the chemical �ioniza-
tion� equilibrium
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�X = �e + �h − Enl. �19�

In the grand canonical description, the condition �19� is just
a consequence of the definition of excitons, Eqs. �14� and
�15�. The chemical potential of the excitons �X is given by
the inversion of

nX��X,T� = gegh� dK

�2��3

1

exp	���2K2

2M
− �X�
 − 1

.

�20�

We should again stress the fact that the degree of ioniza-
tion is, due to the damping of the two-particle states, not
really a well-defined quantity around the Mott density. It
gives, however, a good qualitative measure for the state of
the EHP.

From the previous consideration, in principle, the chemi-
cal potential of free carriers �neglecting scattering states� is
known, too. It is defined by

na
���a,T� = ga� dk

�2��3

1

e���a�k�−�a� + 1
. �21�

An analytical determination of the chemical potential from
Eq. �21� is possible at most in limiting cases �nondegenerate
or highly degenerate, respectively�. In the general case,
knowing the RPA quasiparticle energy �a�k�, �a can be ob-
tained by numerical inversion of Eq. �21�. The determination
of �a�k� according to Eq. �10� is, however, a numerically
expensive task. As an alternative to the complete inversion of
Eq. �21�, one can split the chemical potential according to2,25

�a = �a
id + ��a. �22�

Here, �a
id is the ideal contribution and ��a is the correlation

part. The inversion of Eq. �21� with respect to the first order
in ��a is usually referred to as incomplete inversion.29 Then
the ideal contribution, for arbitrary degeneracy, follows in
well-known manner from

na
���a

id,T� = ga� dk

�2��3

1

exp	���2k2

2ma
− �a

id�
 + 1

. �23�

Numerical calculations for the correlation part ��a have
been performed, e.g., for a hydrogen plasma in Ref. 29 and
for the EHP in Ref. 30. From the numerical results and the
limiting cases, Padé formulas have been constructed in Refs.
30 and 31. A formula very similar to that in Ref. 30 has been
proposed in Ref. 1.

With the subdivision �22� for the chemical potential of the
species a introduced above, and ��eh=��e+��h, a gener-
alized MAL follows from Eq. �14�,

zX = e��e
id
e��h

id
e−��Enl−��eh�, �24�

which determines the plasma composition implicitly.
The procedure is simpler for a nondegenerate EHP. Then

it holds

za =
na�a

3

ga
e���a, zX =

nX�X
3

gegh
�25�

with �a
2=2��2 / �makBT�, and we immediately arrive at the

Saha equation for nonideal plasmas,2,10

1 − �

�2 = ne�ehe−��Enl−��eh� �26�

with �eh
2 =2��2 / �mehkBT�, meh

−1=me
−1+mh

−1. For arbitrary de-
generacy, the degree of ionization � has to be determined by
Eq. �19� and �24� instead of the Saha Eq. �26�. In terms of �
and ne, Eq. �19� gets the form

�X��1 − ��ne,T� = �e��ne,T� + �h��ne,T� − Enl. �27�

Equation �27� represents a form of the MAL defined by Eq.
�14�, which allows for the determination of the degree of
ionization � as a function of density and temperature and,
therefore, can be regarded as a generalized Saha equation.
The degree of ionization is given implicitly by Eq. �27� and
has to be obtained numerically.11

IV. ELECTRON-HOLE PAIR SPECTRUM

The influence of many-body effects on the composition of
the partially ionized EHP according to Eqs. �27� together
with Eqs. �21� and �20� is contained in two quantities,
namely, �i� the quasiparticle energies �a�k� and �ii� the two-
particle bound state �exciton� energy Enl. It is well known
from both optical experiments32 and from the theoretical
point of view3 that the exciton energy only weakly changes
with increasing excitation, while the ionization is mainly
generated by the lowering of the band edge, described in our
approach by the quasiparticle energies of carriers. According
to Ref. 3, this behavior can be described by an effective
wave equation considering the influence of screening both by
self-energies and by a renormalization of the Coulomb inter-
action.

Experimentally the influence of many-body effects in an
excited semiconductor can be determined by measuring the
optical spectrum detected with a weak probe pulse. A corre-
sponding theoretical description is given by the semiconduc-
tor Bloch equations �SBEs�.33 If one considers the carriers to
be in quasiequilibrium, the carrier distributions are Fermi
functions with given chemical potential and temperature,
which are not affected by the weak probe pulse, and only the
kinetic equation for the polarization has to be solved. In this
case, the equation for the polarization p�k ,��, generated by
the probe pulse E��� and coupled via the dipole matrix ele-
ment d to the semiconductor, can be written in excitonic
units as34–38

�� − k2 − �HF�k� − 
r�k,���p�k,��

+� dq

�2��3 �N�k�Veh�k − q� + ��k,q,���p�q,��

= N�k�dE��� . �28�

Many-body effects are contained �i� as HF renormalized car-
rier energies �HF�k� and Pauli blocking N�k�=1− fe�k�
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− fh�k�, and �ii� as screening effects in the renormalized in-
teraction matrix ��k ,q ,��,

��k,q,�� = �Veff�k,q,�� − i	�k,q,��

= �
a�b

� d�̄

2�

�
�1 − fa�k��Vab

� �k − q,�̄� + fa�k�Vab
� �k − q,�̄�

�� − �a�k� − �b�q� − ��̄ + i�	a�k� + 	b�q��/2
,

�29�

whose real and imaginary parts, �Veff�k ,q ,�� and
	�k ,q ,��, are the effective interaction and the so-called off-
diagonal dephasing, respectively, and in the interband self-
energy 
r�k ,��,


r�k,�� = �esc�k,�� − i	�k,�� =� dq

�2��3��q,k,��

= 
e
r�k,� − �h� + 
h

r�k,� − �e� , �30�

with its real and imaginary parts �esc�k ,�� and 	�k ,�� be-
ing the renormalized interband self-energy and the diagonal
dephasing, respectively.

It is important to notice that the various many-body quan-
tities widely compensate each other pairwise in the case of
bound states. This concerns on one hand the HF energies and
the Pauli blocking, and the renormalized interband self-
energy �esc�k ,�� and the effective interaction �Veff�k ,q ,��
on the other hand as well as the so-called diagonal and off-
diagonal dephasing 	�k ,��, 	�k ,q ,��, respectively. More-
over, there is an exact relation of the �two-particle� interband
self-energy 
r for an energy �� to the �single-particle� car-
rier self-energies 
a

r at shifted energies ��−�b given in Eq.
�30�. The appearance of this energy shift becomes physically
clear if one looks at the energies in the denominator of the
effective interaction matrix ��k ,q ,��. It becomes resonant
if the incident photon with the energy �� generates an inter-
band transition, described by the renormalized quasiparticle
energies �a�k�+�b�q�, accompanied by absorption or emis-
sion of a plasmon with the energy ��̄. The quasiparticle
energies �a�k� and the quasiparticle damping 	�k ,�� here
are determined from Eqs. �10� and �3� using the RPA self-
energy


a
��k,�� =� dq

�2��3 � d��

2�
ga

��k − q,� − ���Vaa
� �q,��� .

�31�

The correlation functions of the screened potential Vab
� �q ,��

appearing in the Eqs. �29�–�31� are related to the inverse
retarded dielectric function �r−1

�q ,�� via

Vab
� �q,�� = 2iVab�q�Im �r−1

�q,��nB��� ,

Vab
� �q,�� = 2iVab�q�Im �r−1

�q,���1 + nB���� .

�32�

The function nB��� represents the Bose distribution of the
elementary excitations in the plasma �plasmons�, and, in our

calculations, we use the Lindhard dielectric function. Contri-
butions of bound electron-hole pairs to the dielectric screen-
ing function in the sense of atomic �excitonic�
polarizabilities39 are small as compared to that of the free
carriers and are neglected. This is justified if the description
of the Mott transition is addressed; however, excitonic con-
tributions to screening should be incorporated if the proper-
ties of the pure excitonic gas phase are investigated.

For weak probe pulses the macroscopic polarization P���
depends linearly on the electric field

P��� =� dk

�2��3 p�k,�� = ����E��� , �33�

where the susceptibility ���� characterizes the dielectric
properties of the semiconductor. The experimental verifica-
tion of this approach was given in several optical experi-
ments, measuring the transmission/reflection of semiconduc-
tor heterostructures. In previous papers35–38 we have
demonstrated how the influence of many-body effects on the
exciton line, e.g., carrier-induced line broadening, shift of the
exciton resonance and band gap shrinkage show up in the
phase and amplitude of transmitted/reflected light.

The semiconductor Bloch equation approach sketched
above describes systems with a band structure in an electro-
magnetic field. In general, the two-particle problem in a sur-
rounding medium needs a careful analysis of the Bethe-
Salpeter equation for the two-particle Green’s function.

A first approach in this direction was given in Refs. 3 and
4 using the dynamically screened ladder approximation.
However, this result has some serious shortcomings, espe-
cially in the degenerate plasma. There, a static contribution
in addition to the Hartree-Fock term, and, moreover, a divi-
sion by the Pauli blocking factors 1− fa�k1�− fb�k2� occur. In
a subsequent paper27 it was shown that these shortcomings
are produced by using an inappropriate retarded Green’s
function and by the treatment of the retardation of the
screened potential by the Shindo approximation. The cor-
rected effective Schrödinger equation was derived in Refs.
27 and 40 and for the EHP in Refs. 37 and 38. For an
electron-hole pair system, both approaches are in full agree-
ment for zero center-of-mass momentum.

Numerical solutions for the pair spectrum have been
given in Refs. 35–38 using the SBE and in Refs. 3, 41, and
42 using the effective Schrödinger equation in the nondegen-
erate case.

Our numerical calculations were performed for zinc se-
lenide �ZnSe� with an excitonic 1s ground state energy of
22.4 meV and effective electron and hole masses of me
=0.15me

0 and mh=0.86me
0, me

0 being the free electron mass.
In Fig. 1 the imaginary part of the susceptibility � is pre-
sented for a temperature of 30 K and different carrier densi-
ties. In order to present a better resolution of the different
exciton states, we have used a logarithmic scale. The Mott
transition is obviously generated by the decreasing band
edge and takes place first for the higher exciton states. The
position of the exciton nearly stays unchanged; there is only
a weak shift to lower energies. The shift turns to higher en-
ergies if the temperature is decreased. This can be seen in
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Fig. 2, where the positions of the 1s-exciton peak and of the
band edge are shown for different temperatures.

The two-particle spectrum shown in Fig. 2 exhibits the
following peculiarities: �i� There is a lowering of the band
�continuum� edge due to the many-body effects contained in
the self-energy. �ii� The exciton ground-state energy remains
nearly constant up to higher densities. This follows from the
approximative compensation of the many-particle effects for
the bound states.3 Moreover, at low temperatures, ��k ,q ,��
and, therefore, 
r�k ,�� are small, and Coulomb Hartree-
Fock self-energy and Pauli blocking dominate. However,
they nearly compensate each other at low densities, too, but
lead to a weak shift for higher densities. �iii� The difference
between band edge and exciton energy defines the effective
ionization energy Ieff, which is lowered with increasing den-
sity. �iv� For Ieff=0, the bound state vanishes and merges into
the scattering continuum. This process is referred to as Mott
effect, and the corresponding density is called Mott density.

Above that point, the bound state does not exist, and the
bound state energy is no longer a meaningful quantity. �v�
Finally, the results for the exciton energy show a different
behavior for high and low temperatures, i.e., we observe a
blue �low T� or a red shift �high T�, respectively.35

While the exciton energy appears in Fig. 2 as a well-
defined line, in fact, the exciton is broadened due to a finite
damping.28 At low temperatures, however, this broadening is
small: the excitonic full width at half maximum is �=0.012
Ryd for 3 K and �=0.07 Ryd for 30 K just below the Mott
density, respectively.

In addition to our results from the solution of the full SBE
�28�, in Fig. 2 we show a comparison to two approximations:
That is �i� a solution with screening effects being neglected
in the SBE and only the HF energies and the Pauli blocking
considered, i.e., ��k ,q ,��=0 and 
r�k ,��=0 �Hartree-
Fock approximation�. �ii� A further frequently used approxi-
mation is the static limit of ��k ,q ,��. It follows from Eq.
�29� if �̄ exceeds all other terms in the denominator. If fur-
thermore, for �esc�k ,�� �cf. Eq. �30�� the classical limit is
applied, it leads to the Debye shift �e2 �� is the inverse
screening length defined by �2= �e2 /�0�rkBT��

�ne

��e
+

�nh

��h
�, �r is

the background dielectric constant�. Figure 2 shows that this
approximation provides an inadequate description of both
bound state energy and band edge even at room temperature.
In particular, the Mott effect occurs at far too low densities.
Static screening becomes a convenient approximation far
above room temperature but completely fails at low tempera-
tures.

V. CHEMICAL POTENTIAL AND DEGREE OF
IONIZATION

The MAL given by Eq. �27� represents a relation between
the chemical potentials of the EHP constituents ��e ,�h ,�X�.
While we assume �X to be the chemical potential of ideal
bosons, Eq. �20�, �e and �h �Eq. �21�� contain correlation
contributions in the RPA quasiparticle energy �a�k�, Eq. �10�.
The quasiparticle retarded self-energy of carriers is given in
RPA by Eq. �31� or, in an alternative representation, by


a
RPA�k,�����=�a�k� = 
a

HF�k� +� dq

�2��3� d��

2�

�
�1 − fa

„�a�q�… + nB�����V̂�k − q,���
�a�k� − �a�q� − ��� + i	a�q�/2

,

�34�

where V̂�q ,�� is related to the correlation functions

of the screened potential, Eq. �32� by V̂�q ,��
= i�V��q ,��−V��q ,���. The quasiparticle energy �a�k� is,
in turn, given by Eq. �10�.

In comparison to earlier calculations,30 where quasiparti-
cle energies �a�k� on the right-hand side �r.h.s.� of Eq. �34�
were replaced by kinetic energies and the damping 	a�q�
was neglected, we solve Eqs. �34� and �10� self-consistently
by iteration. Our iteration procedure shows that both real and
imaginary parts of the self-energy are reduced. These

FIG. 1. Imaginary part of the susceptibility on a logarithmic
scale for different carrier densities n�cm−3� from the solution of the
SBE �28�. Eg is the band gap and Eex

b is the 1s-exciton energy.
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FIG. 2. Two-particle spectrum vs density in ZnSe: band edge
�upper curves� and exciton ground state energy �lower curves�.
Solid lines: solution of the full SBE, dashed lines: solution with
��k ,q ,��=0 and 
r�k ,��=0 �Hartree-Fock approximation�, dot-
ted lines: static limit of ��k ,q ,�� and classical limit for �esc�k ,��
�Debye approximation�. Ryd denotes the excitonic Rydberg.
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changes of the quasiparticle energies influence the chemical
potentials, calculated from Eq. �21�.

Figure 3 shows isotherms of the sum �=�e+�h vs den-
sity. In order to illustrate the general behavior of the chemi-
cal potential, at first, we apply the idea of incomplete inver-
sion of the density according to Eq. �22� with the correlation
part given by the Padé formula from Ref. 30 and denote the
resulting chemical potential by �RZR=�e

id+�h
id+��eh.

The upper panel compares � for several temperatures. At
lower temperatures, a van der Waals loop occurs, i.e., a re-
gion with an instability �� /�n�0, which may be a signal of
a phase transition.1,2,43 The lower panel shows a comparison
of several approximations for �: self-consistent iterative so-
lution of Eqs. �34� and �10� �later on referred to as �iter�,
�RZR, Hartree-Fock and Debye approximations, and ideal
chemical potential. What can be seen immediately is that the
van der Waals loop is caused by many-particle effects. The
latter ones are strongly overestimated by the Debye approxi-
mation. The other approximations deviate from the self-
consistent result considerably, too. These quantitative differ-
ences will show up again in the ionization equilibrium,
which is very sensitive to the actual form of the chemical
potential.

Figure 4 represents a graphical solution of Eq. �27�. For
illustrative purposes we use again �RZR like in the upper
panel of Fig. 3. Solid and dashed lines represent the r.h.s. and
left-hand side �l.h.s.� terms of Eq. �27�, respectively, for
given temperatures T and total densities ne. Their intersec-
tions indicate the possible values of the degree of ionization
��ne ,T�. Here and in the following we consider only the
ground state, i.e., n=1, l=0, Enl�E1.

Isotherms of the degree of ionization as a function of the
density obtained by numerical solution of the MAL �27� are

shown in Fig. 5 �chemical potentials of carriers: �iter�. We
observe a very strong increase in � up to �=1 at high den-
sities due to the lowering of the ionization energy.2,10 This
behavior is usually referred to as Mott transition as a conse-
quence of the Mott effect.

The comparison given in Fig. 6 shows the influence of the
approximations applied for the chemical potential, cf. Fig. 3,
on the degree of ionization. Obviously, the absolute position
�and, as detailed investigations show, also the temperature
dependence� of the Mott density vary for different approxi-
mations for the chemical potential.

At low enough temperatures, the curves exhibit a region
where � is multivalued around the Mott density, i.e., a bista-
bility occurs. The reason of this behavior is obvious from
Figs. 3 and 4: the van der Waals loop in the chemical poten-
tial. Nevertheless, for lower densities there is only a single
intersection of the curves, but for higher densities, three in-
tersections are possible leading to three solutions for � for a
given combination of temperature and density. Thus, we find
a bistability �the intermediate solution is unstable�, which
may give rise to a first-order phase transition from an exciton
gas to a fully ionized EHP �Mott phase transition�. This ef-
fect has been addressed as a possible scenario for finding an
excitonic condensate still at rather high densities �and, thus,
at rather high temperatures�.44 It is, however, probably a the-
oretical artifact. Already the step from using �RZR to �iter,
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id+�h
id−�e2 �dotted�, for

T=10 K.

�3.5 �3.0 �2.5 �2.0 �1.5 �1.0 �0.5 0.0

�0.6

�0.5

�0.4

�0.3

�0.2

�0.1

0.0

log10 Α

ch
em

.p
ot

en
tia

l
�R

yd
�

FIG. 4. Graphical solution of Eq. �27�: chemical potential of the
excitons �X �l.h.s. of Eq. �27�; dashed lines� and sum of the chemi-
cal potentials of electrons and holes minus binding energy
�e+�h−E1 �r.h.s. of Eq. �27�; solid lines� vs � for T=20 K and
two densities: ne=1017 cm−3 �bold lines; single solution for �� and
ne=5�1017 cm−3 �thin lines; three solutions for ��.

1 0 1 2 1 4 1 6 1 8

l o g 1 0 ( n e / c m
− 3 )

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

α

FIG. 5. Degree of ionization � vs density for several tempera-
tures T, Eq. �27�: 2 K �solid line�, 10 K �dashed�, and 30 K �dotted�.

IONIZATION EQUILIBRIUM IN AN EXCITED… PHYSICAL REVIEW B 80, 155201 �2009�

155201-7



i.e., in particular, the inclusion of the single-particle damping
and the complete inversion of the density instead of the in-
complete one, reduces the density range of bistability signifi-
cantly, cf. Fig. 6. The question whether the inclusion of the
exciton-exciton interaction �which should be very important
just below the Mott density since there are only excitons�
would remove the bistability completely is still to be re-
solved. It is, however, very likely as similar experiences
from the atom-atom interaction in the hydrogen plasma21

show.
For an overview of the ionization state of the EHP, in Fig.

7, isolines ��ne ,T�=const. in the density-temperature plane
are shown. With increasing temperature at fixed density, ther-
mal ionization takes place quite smoothly, while at fixed tem-
perature with increasing density, the Mott transition appears
as an abrupt jump from �=0 to �=1.

At lower temperatures we find a strong dominance of the
excitons ���0�. Regarding them as noninteracting bosons,
Bose-Einstein condensation �BEC� may be expected under
the condition

�1 − ��ne�X
3 � 2.61. �35�

This condition is given in Fig. 7 by the triangle bordered by
the dashed line at the bottom. Note that the breakup of exci-

tons at the Mott density does not mean a disappearance of
the condensate. Instead, a closer investigation shows a
smooth crossover to a BCS-type condensate at high
densities.18,19,45 Thus, the physical nature of the condensed
particles changes, i.e., we find excitons below the Mott den-
sity, and Cooper-like electron-hole pairs far above it. To
which extent the survival of the excitons as resonances just
above the Mott density plays a role has still to be investi-
gated.

VI. SUMMARY AND OUTLOOK

The ionization equilibrium of an EHP has been investi-
gated on a quantum statistical footing. Using the spectral
function of carriers in extended quasiparticle approximation
and transforming into a chemical picture, a very general
mass-action law �MAL� has been considered which, in con-
trast to earlier papers, accounts for the Fermi/Bose character
of carriers/excitons. This is indispensable for discussing the
Mott transition at low temperatures and its interplay with a
possible BEC of excitons. Many-body effects are included in
the calculation of chemical potentials of carriers by their
self-energies within quasiparticle approximation. The dy-
namical screened self-energies in RPA, depending itself on
the chemical potentials again, have been computed self-
consistently. In contrast to earlier papers not only the renor-
malization of the energy, but the damping �finite life time� of
carriers have been incorporated, too. We have demonstrated
that the changes of the chemical potentials due to many-body
effects within our approach are strongly reduced in compari-
son to earlier approximations. In particular, an approximation
based on static screening overestimates the influence of
many-body effects at low temperatures by orders of magni-
tude �see Fig. 3�.

The influence of many-body effects on the exciton ener-
gies has been obtained by using the semiconductor Bloch
equations �SBE� considering the quasiparticle self-energies
of carriers. We found that the Mott transition of excitons is
shifted to higher carrier densities as compared to earlier ap-
proximations. For lower temperatures, the effects of dynami-
cal screening in the SBE widely cancel and a simple model
including the Coulomb Hartree-Fock renormalization �HF
carrier energies and Pauli blocking� is applicable. Again, the
approximation with static screening fails completely at low
temperatures and is only valid far above room temperature
�see Fig. 2�.

This behavior is reflected in the degree of ionization, cal-
culated with the generalized MAL for ZnSe and compared to
the different approximations, too �see Figs. 5 and 6�. The
Mott transition, expressed by an abrupt increase in the de-
gree of ionization, is shifted to higher carrier densities. For a
temperature of 10 K, the Mott density is increased by more
than one order of magnitude in comparison to those follow-
ing by static screening approximation. In particular, the mul-
tivaluedness occurring around the Mott density is strongly
suppressed within our approach. We assume that it will very
likely vanish completely after inclusion of the exciton-
exciton interaction. This assumption is based on calculations
for the ionization equilibrium in hydrogen.21
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FIG. 6. Degree of ionization � vs density, Eq. �27�, for
T=2 K. Comparison of several approximations for the chemical
potential: �iter �solid line�, �RZR �dashed�, and Debye approxima-
tion �D �dotted�.
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Given the drastic deviations in chemical potentials, Mott
density and extension of the ionization hysteresis that result
from the mentioned earlier approximations for the many-
particle effects, our previous calculations for Cu2O as pre-
sented in Ref. 11 are to be taken with a grain of salt. They
will be re-assessed on the present theoretical level in a forth-
coming publication.

Finally, we have presented an overview of the ionization
state in ZnSe as a function of temperature and density of
carriers �see Fig. 7�. Due to the increase in the Mott density,

the possible window for the occurrence of BEC of noninter-
acting excitons is extended to higher temperatures.
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